Energy Level Questions Mark Scheme

1. The diagram shows some of the energy levels for atomic hydrogen.

For each of the statements below, indicate whether the statement is true ($\sqrt{}$) or false (x)

-13.6 -

Statement	True/False
The single electron of a hydrogen atom normally occupies the -13.6 eV energy level.	\checkmark
An electron of energy 10 eV colliding with a hydrogen atom in its ground state could have an energy of 0.2 eV after the collision.	\times
An electron moving from the -3.4 eV to the -0.85 eV level gives out a photon of energy 2.55 eV.	\times
Light of wavelength 650 nm has sufficient energy to excite an electron from the -3.4 eV to the -1.5 eV energy level.	\checkmark

Use this space for any calculations.

(4 marks) [Total 4 marks]

Description	Type of wave	
A wave capable of causing photo- electric emission of electrons	Ultraviolet	(1)
A wave whose vibrations are parallel to the direction of propagation of the wave	Sound	(1)
A transverse wave of wavelength	Infrared	(1)
$5 \times 10^{-6} \mathrm{m}$		
The wave of highest frequency	Ultraviolet	(1)

[4]

4

3. The diagram shows some of the outer energy levels of the mercury atom. 0 ———— Ionisation

Calculate the ionisation energy in joules for an electron in the -10.4 eV level. any use of 1.6×10^{-19} (1)

Ionisation energy = $1.66/1.7 \times 10^{-18} (J)$ (1) [-1.66 × 10⁻¹⁸ \rightarrow (1 only)]

Any other unit : unit penalty

(2 marks)

An electron has been excited to the -1.6 eV energy level. Show on the diagram all the possible ways it can return to the -10.4 eV level.

(3 marks)

Which change in energy levels will give rise to a yellowish line ($\lambda = 600$ nm) in the mercury spectrum?

Substitution in $\frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{600 \times 10^{-9}}$ (1) $\div 1.6 \times 10^{-19}$ (1) = 2.07 (2 - 2.1) (eV) (1) Level change -1.6 to -3.7 (1) [Insist on '-' sign AND on higher \rightarrow lower level, i.e. NOT -3.7 to -1.6] Whole thing done backwards \Rightarrow 591 nm, can get 4/4

(4 marks) [Total 9 marks]

4. Energy level diagram:

 $-13.6 \rightarrow 0$

$$-1.51 \rightarrow 0$$
 AND $-3.39 \rightarrow 0$ ONLY

Why level labelled – 13.6 eV is called ground state: Correct reference to stability/lowest energy state/level of the electron/ atom/hydrogen

Transition which would result in emission of light of wavelength 660 nm:

Correct use of
$$c = f\lambda$$
 or $E = hc/\lambda$ or $f = \frac{3 \times 10^8 \text{ ms}^{-1}}{660 \times 10^{-9} \text{ m}}$

Correct use of eV/J i.e. $\div 1.6 \times 10^{-19}$

$$\Delta E = 1.88$$

Transition = $1.5 \rightarrow 3.39$

[May be a downward arrow on diagram]

4

2

1

[7]